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a b s t r a c t

The unsteady behaviour of a thin elastic plate in the form of a strip of constant width and infinite length,
floating on the surface of an ideal and incompressible liquid, is investigated within the limits of the linear
shallow-water theory. The unsteady behaviour of the plate is caused by initial disturbances or an external
load. The depth of the liquid under the plate is variable. It is assumed that all the flow characteristics
are independent of the coordinate along the plate. The deflection of the plate is sought in the form of an
expansion in eigenfunctions of the oscillations in a vacuum with time-varying amplitudes. The problem
reduces to solving an infinite system of ordinary differential equations for the unknown amplitudes. The
behaviour of the plate is investigated for different actions and shapes of bottom irregularities. It is shown
that the bottom topography can have a considerable effect on the deformation of the plate.

© 2008 Elsevier Ltd. All rights reserved.

The hydroelastic behaviour of thin plates floating on the surface of a liquid is of interest in a number of practical applications: floating
platforms, ice fields and breakwaters. The large number of investigations into the behaviour of floating elastic plates under the action of
incoming surface waves and an external load (see the Refs. 1–3, for example) has mainly been carried out on the assumption that the
liquid depth is constant. In reality, however, the irregularity of the bottom and the corresponding changes in the liquid depth can have
an appreciable effect on the hydroelastic behaviour of the plate when a floating structure is located close to the shore. The effect of the
bottom topography has recently been investigated in the linear problem of the scattering of periodic surface waves by a floating elastic
Plate4–6 on the assumption that the liquid flow and the plate deformation are periodic functions of time. The two-dimensional problem
has been considered4 for a liquid of finite depth. The boundary elements method was used in the numerical solution of Laplace’s equation
in a finite domain which encompasses the irregularity and the plate. The behaviour of a rectangular plate has been studied numerically
using the method of finite differences5 in the case of shallow water and using the finite elements method6 in the case of a finite liquid
depth. A comparison, carried out in Ref. 5, of the numerical and experimental results for the oscillation amplitudes of a plate showed
good agreement. It has been noted6 that the effect of an irregular bottom is particularly noticeable in the case of a shallow depth and long
incoming waves.

A method of solving the linear time-varying problem of a floating elastic beam plate is proposed in this paper. The following cases are
considered as examples: the incidence of a localized surface wave on a plate, the initial deformation of a plate, and the action of a moving
external load on it. The first and second cases have been studied earlier in the case of a regular bottom7, as well as the third case8. The
solution of the problem in the first case will initially be described in detail, and the changes which are introduced in the other cases are
then briefly indicated.

1. Formulation of the problem

Suppose a homogeneous elastic beam of length 2L floats freely on the surface of an ideal incompressible liquid. The liquid surface,
which is not covered by the beam, is free. The domain S, occupied by the liquid, is subdivided into three parts: S1(|x| < L), S2(x < −L) and
S3 (x > L), where x is the horizontal coordinate. When there is no plate, the depth of the liquid is equal to H(x) in the domain S1. In the
semi-infinite domains S2 and S3, the depths of the liquid are assumed to be constant and equal to H1 and H2 respectively. For simplicity,
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the change in the liquid depth is assumed to be continuous, that is, H(−L) = H1 and H(L) = H2 but an abrupt change in the depth when |x| = L
can also be considered. When the plate is present, the liquid depth in the domain S1 is reduced by the value of the settling of the plate
d and is equal to h(x) − H(x) − d. It is assumed that the maximum liquid depth is small compared with the length of the surface waves
and flexural-gravitational waves, and the shallow water approximation is used. The velocity potentials describing the liquid motion in the
domains Sj, are equal to �j (x, t) (j = 1, 2, 3), where t is the time.

We will assume that a localized surface wave, in which the vertical displacement of the liquid is equal to �0(x, t) = f (x −
√

gH1t), runs
onto the beam from the left. The function f(�) is only non-zero when |�| < c. Such a wave can arise as the result of the collapse of the elevation
of the free surface at an instant t = t0 subject to the condition that all the liquid is initially at rest. It is well known9 that, when t > t0, the free
surface represents two isolated waves moving in opposite directions without deformation and with a velocity

√
gH1. The amplitudes of

these waves are equal to half the amplitude of the initial elevation and the width of the domain occupied by each of these waves is equal to
the width of the domain of the initial elevation. It is assumed that, at the instant t = 0, the plate and the liquid are at rest in the domains S1
and S3 and the localized disturbance reaches the left edge of the plate in the domain S2. When t > 0, oscillations of the plate and the liquid
commence in the domain S1 which cause wave disturbances diverging from the plate in the domains S2 and S3.

The normal bending of an Euler beam w(x, t) is described by the equation

(1.1)

where D is the cylindrical stiffness of the plate, m is its specific mass, � is the liquid density and g is the acceleration due to gravity.
According to linear shallow-water theory, the relation

(1.2)

holds. In domains outside the plate, the velocity potentials satisfy the equations

(1.3)

The elevations of the free surface �2(x, t) and �3(x, t) in the domains S2 and S3 respectively are determined from the relations

Conditions for a free edge, that is, the bending moment and the shearing force are equal to zero

are set up on the edge of the beam, and the pressure and mass continuity conditions

(1.4)

where

must also be satisfied. Far from the beam

The initial conditions have the form

(1.5)

We will now change to dimensionless variables, taking L as the unit of length and
√

L/g as the unit of time. The following dimensionless
coefficients are used
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2. The method of normal modes

We will seek the beam deflection in the form of an expansion in the eigenfunctions of the oscillation of a beam with free ends in a
vacuum:

(2.1)

The functions Xn(t) are to be determined and the functions Wn(x) are the solutions of the following eigenvalue problem in dimensionless
variables

A prime denotes differentiation with respect to x.
These solutions have the form

where

The eigenvalues �n are determined from the equation

The functions Wn(x) form a complete orthogonal system normalized in the following manner

where �nm is the Kronecker delta.
Substituting expansion (2.1) and initial conditions (1.5) into Eq. (1.1), multiplying the resulting relations by Wm(x) and integrating them

with respect to x from −1 to 1, we obtain the following system of ordinary differential equations with the initial conditions

(2.2)

Here,

(2.3)

where the dot denotes differentiation with respect to time.
We will seek the solution for �1(x, t) in the form

where the functions �n(x) satisfy the equation

and have the form
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The function q(x, t) is unknown and, according to Eq. (1.2) and initial conditions (1.5), has the form

The functions u(t) and �(t) are determined from the matching conditions (1.4).
We next consider the behaviour of the solution in the domains S2 and S3 and seek the solution for �2(x, t) in the form

where �0(x, t) is the potential of the incoming wave, which is determined from the relation

The function �(x, t) describes the velocity potential of the reflected wave. According to Eq. (1.3), the solution for �(x, t) can be sought in
the form

(2.4)

A similar representation also holds for the function �3(x, t) which describes the velocity potential of the transmitted wave

(2.5)

The functions A(�) and B(�) are unknown. Using the matching conditions (1.4), we obtain the following differential equations for these
functions

(2.6)

with the initial conditions

Here,

Using the relations presented above, we obtain an expression for the function Fm(t) (2.3) in the form

where

The final system of differential equations for determining the oscillations of the beam has the form

(2.7)
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After the functions Xn(t) and u(t) have been determined, it is possible to find all the characteristics of the motion of the liquid and the
elastic beam. For example, for the vertical elevations of the free surface we obtain

The functions Ȧ(�) and Ḃ(�) are determined from Eqs. (2.6).

3. The energy relation

We will now determine the change with time of the energy of the transmitted and reflected waves. The total energy of the incoming
wave is equal to9

This energy is transferred to the oscillations of the elastic plate and to the scattered (transmitted or reflected) surface waves. When t → ∞,
the oscillations of the plate attenuate and it is restored to its initial horizontal position. The energy of the reflected wave is equal to

and the energy of the transmitted wave is equal to

There is no energy dissipation in this problem and, consequently,

Satisfaction of this equality can serve as a criterion of the accuracy of the method of solution used.

4. The action of a load on the beam

It is assumed that the deformation of the beam is caused by its initial disturbances and an external load and that the liquid outside the
beam is initially at rest. In this case, Eq. (1.1) takes the form

(4.1)

The specified function pe(x, t) describes the external load on the beam. The initial conditions

(4.2)

contain functions which must satisfy relations (1.2) and (1.4).
Using expansion (2.1), instead of (2.2), we obtain the following system of differential equations with the initial conditions
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Here,

The representations for the solutions in the domains S2 and S3 are identical to representations (2.4) and (2.5) respectively, with the sole
difference that the function A(�) is determined from the first equation of (2.6) when ˛(t) ≡ 0.

The final system of differential equations now has the form of system (2.7), if we put ˛(t) ≡ 0 in it and the zero right-hand side of the
first equation is replaced by the function −Zm(t).

5. Numerical results

Using the reduction method, we replace the infinite series in the expansion (2.1) with a sum of N terms. The system of ordinary differential
equations (2.7), and the system analogous to it, which has just been described, were solved numerically using a fourth-order Runge–Kutta

Fig. 1.
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method. The following initial parameters were used

In all the calculations, the number of the beam oscillation modes N = 20 and a further increase in N hardly changes the result.
Three forms of bottom topography are considered: a hill, a hollow and a uniform decline. The relief of the bottom, which is described

by the relation

(5.1)

simulates a hill when � > 0 and a hollow when � < 0. A uniform decline is described by the relation

In investigating the incidence of a localized surface wave on an elastic beam, the shape of the beam was chosen in the form

The total energy of such a wave is constant in time and equal to

The behaviour of the form of the free surface and of the beam at the instants t
√

g/L = 10 (on the left) and t
√

g/L = 20 (on the right)
when x0/L = −1.25, c/L = 0.25 is shown in Fig. 1. The upper part of Fig. 1 refers to the case of a uniform bottom with a depth H1, and the
middle and lower parts are obtained for a bottom irregularity of the form (5.1) when � = 1 (a hill) and � = −1 (a hollow). The behaviour of
�2/a when x/L < 1 is shown, the behaviour of w/a when |x|/L < 1 is shown by the solid line and the behaviour of �3/a. When t

√
g/L = 10,

the initial wave passes under the plate, which leads to its deformations. The deflections of the plate as well as the behaviour of the free
surface depend very much on the shape of the bottom.

Fig. 2.
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When t
√

g/L = 20, a significant portion of the initial wave energy of the incoming wave was transformed into the transmitted wave.
However, the form of the transmitted wave is very different from the form of the initial wave. This difference is due both to the properties
of the plate and the shape of the bottom. In the case of a uniform bottom and when there is a hollow in the bottom, the oscillations of the
plate become very weak by this time but, when there is a hill, they still remain quite appreciable.

The change in the total energy of the reflected wave and the combined energy of the transmitted and reflected waves E(t) = Er(t) + Er(t)
with time is shown in Fig. 2 for all three types of bottom relief. The results for a uniform bottom, a hill and a hollow are labelled with the
numbers 1, 2 and 3 respectively. The results for the combined energy are represented by the solid curves and the results for the reflected
wave by the dashed curves. It can be seen that the limiting value of the combined energy is attained most rapidly in the case of a hollow.
Consequently, in this case, the oscillations of the plate attenuate earlier than in the other two cases. The plate oscillates for significantly
longer when there is a hill on the bottom. In this case, the energy of the reflected waves is somewhat greater, although the difference
between the three cases considered is quite insignificant for the reflected waves. Only about 10% of the initial energy is scattered into the
reflected waves and the main part of the energy passes through the plate and propagates in the form of transmitted waves.

We next consider the behaviour of a beam due to its initial deformation in a liquid at rest. The following functions, which define the
initial conditions (4.2), are used

There is no external load and, consequently, pe = 0 in Eq. (4.1). The behaviour of the normal deflections of the beam is shown in Fig. 3
for a function w0(x) which is symmetrical about the origin of coordinates when x0 = 0, c = L (on the left) and for an asymmetric function
w0(x) when x0 = c = L/2 (on the right) for the two instants: t

√
g/L = 2.5 and t

√
g/L = 10. The results for a uniform bottom, a hill, a hollow

Fig. 3.
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and a slope correspond to curves 1–4. Like the results for an initial elevation of the free surface, the oscillations of the beam depend
considerably on the shape of the bottom. The most long-lived oscillations are observed when there is a hill on the bottom, particularly
in the case of a symmetric initial deformation of the beam. The difference in the initial shape between the symmetric and asymmetric
cases leads to the fact that higher modes are excited in the asymmetric case which, however, decay more rapidly with time than the lower
modes.

The effect of a moving load is considered using an example which simulates the landing of an aircraft. It is assumed that the beam and
the liquid are at rest at the initial instant and that a load with a velocity �0 smoothly touches upon the beam in a domain with its centre at
the point x = x0 and subsequently moves while uniformly slowing down until it comes completely to rest at the point x = x1 at the instant
t = t1 ≡ 2(x1 − x0)/�0. The change in the velocity of the load �(t) with time when t < t1 is equal to �(t) = �0(1 − t/t1) and the position of the
epicentre of the load s(t) is given by the relation

Fig. 4.
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The distribution of the external load is specified in the form

The previous initial data are used, but now

For these values, t1

√
g/L ≈ 5.3.

The time dependences of the normal deflections of the beam at the instants t
√

g/L = 2.8 (the upper part of the figure) and t
√

g/L = 9.8
(the lower part) are shown in Fig. 4. The hatched rectangle shows the position of the pressure domain at a specified instant. The results
for a uniform bottom, a hill and a hollow are represented by curves 1, 2, and 3. It can be seen that the oscillations of the plate are very
different for the different bottom irregularities. The instant t

√
g/L = 9.8 corresponds to t > t1. Since the motion of the load has stopped by

this instant, the oscillations of the beam gradually decay and, when t → ∞, they take values corresponding to a distributed static load with
its centre at the point x = x1. We obtain the solution of this steady-state problem from a system of differential equations which, in this case,
reduces to a simple system of linear algebraic equations. The values of the static deflection are independent of the liquid depth and are
shown by curve 4 in the lower part of Fig. 4. It can be seen that, in the case of a hollow and a flat bottom, the steady-state solution in the
neighbourhood of the pressure domain is now fairly well satisfied. However, in the case of an irregularity in the form of a hill, the normal
deflections are still far from the static value. This again shows that more persistent oscillations of the beam occur when there is a hill-type
bottom irregularity.

The results obtained show that the form of the bottom irregularities can have a considerable effect on the oscillations of an elastic plate
which is floating on shallow water. Bottom irregularities in the form of a hill lead to the most prolonged oscillations of the plate, other
conditions being equal. The proposed method of calculation can be extended to the case of a circular plate subject to the condition that the
bottom irregularity is localized and located completely under the plate. The solution of the problem of the unsteady behaviour of a circular
plate floating on shallow water has been presented previously10 in the case of a flat bottom.
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